Department of Basic Science

Level: 1

Examiner: Dr. Mohamed Eid

Time allowed: 3 hours

Prep. Year: **Final Exam Mathematics 1** Course: Course Code: BAS 013 A Date: September, 2015

The Exam consists of one page

Answer all questions

No. of questions: 5

Total Mark: 70

18

12

Ouestion 1

Find **y** from the following:

(a)
$$y = 3x^2 + 2\sin x$$

(b)
$$y = x^4 . \tan x$$

(c)
$$y = \sin 3x - \cos x^3$$

(d)
$$y = \sec x^2 + \cot^3 x$$
 (e) $y = \frac{\sin x}{x + x^3}$

(e)
$$y = \frac{\sin x}{x + x^3}$$

(f)
$$y = (x^6 + x^{-3})^5$$

Question 2

Find the limits:

(a)
$$\lim_{x \to 1} \frac{2 - \sqrt{x}}{3 - x^2}$$

(a)
$$\lim_{x \to 1} \frac{2 - \sqrt{x}}{3 - x^2}$$
 (b) $\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 5x + 6}$ (c) $\lim_{x \to 0} \frac{\tan x}{x^2 + \sin x}$ (d) $\lim_{x \to \infty} \frac{x + x^2}{3 + x^3}$

(c)
$$\lim_{x\to 0} \frac{\tan x}{x^2 + \sin x}$$

(d)
$$\lim_{x \to \infty} \frac{x + x^2}{3 + x^3}$$

Question 3

(a) Determine maximum and minimum points of the functions:

6

(i)
$$f(x) = x^3 - 12x$$

(ii)
$$f(x) = (x-2)^3 + 4$$

(b) Write the Maclurin's expansion of the function $f(x) = x^2 + \frac{1}{1+x}$.

4

Question 4

(a)State the definition of the circle.

3

(b) Write the equation of circle of center (3, -1) and radius 2.

3

(c) Show that the circles are orthogonal and find the points of intersection:

$$(x-1)^2 + (y-1)^2 = 3,$$
 $(x+1)^2 + (y-1)^2 = 1$

$$(x+1)^2 + (y-1)^2 = 1$$

(d)Determine the vertex, focus and sketch the parabola $x^2 - 2x - 4y - 3 = 0$.

5

Question 5

(a) State the definition of the parabola.

3

(b) Find center, vertices and sketch the ellipse $x^2 + 4y^2 - 4x + 8y + 4 = 0$.

6

(c) Determine the type of the curve $2x^2 + y^2 - x + 2y - 1 = 0$.

6